
Database Systems
236363

Normal Forms

Decomposition
• Suppose we have a relation R[U] with a schema U={A1,…,An}
– A decomposition of U is a set of schemas U1,…,Ut for which U1

 … Ut=U

• A decomposition is information preserving if it satisfies
(U1R)⋈(U2R) ⋈... ⋈(UtR)=R

• If we have an information preserving decomposition, we can
maintain tables for U1R,...,UtR instead of one big table for R

• Our goal is to find information preserving decompositions for
each possible content of R based on the functional dependencies
identified from the system’s analysis
– Hence, we need to identify conditions for information preserving that

follow from functional dependencies

A Decomposition Example
• Consider the following relation

• The following decomposition is not information preserving

• T1⋈T2 includes (Horse,Black,Small) which is not included in T

• Notice that when applying a join on decomposed tables, new
records that did not appear in the original relation (table) can be
added, but existing records cannot be removed (why?)

Size Color Animal

Large Black Horse

Large Black Cat

Small Black Cat

T=

Color Animal

Black Horse

Black Cat

Size Color

Large Black

Small Black

T2=T1=

Keys - Reminder

• Given a relation R with a schema U and a set
of dependencies F defined over U, a set of
attributes XU is a super-key if the values
of the attributes in X uniquely identify a
record in R
– In other words, X is a super-key if XF+=U

• The set X is a candidate-key, or simply a
key, if it is a minimal super-key
– That is, X is a super-key and no proper subset of X

is a super-key
• Notice that minimal key does not imply smallest key

Theorem

• If R[U] is a relation over the schema U
preserving a dependency set F, then the
decomposition {U1,U2} of U is information
preserving (for any content of R) if and
only if U1U2 is a super-key for U1R or for
U2R (or both)

Proof – First Direction

• Suppose that U1U2 is a super-key for U2R

• Hence, the expression F⊢U1U2U2 holds

• R U1R ⋈ U2R always holds (regardless of U1U2)

• Hence, we must prove that any record in U1R⋈U2R also appears
in R

• Let t be a record in U1R⋈U2R

• Hence, there is a record t1R for which U1(t1) = U1(t)

• For these, U1U2t1 =U2(U1t1)=U2(U1t)=U1U2t holds

• Consequently, from U1U2U2 we deduce that U2(t1)=U2(t) holds

• Thus, t=t1 – that is, tR as needed

Proof – Second Direction

• Assume by way of contradiction that neither F⊢U1U2U1 nor
F⊢U1U2U2 hold
–We will construct a possible content for R[U] that satisfies F but is not

information preserving

• Denote V the set (U1U2)F+ that includes every attribute A for
which F⊢U1U2A
– By the assumptions, neither U1\V nor U2\V are empty
– Further, U1U2V

• Since V is a closure, VF+=V holds
– In particular, V does not include any dependency of the form XY for

which X is included in V while Y includes an attribute that is not in V

Proof – Second Direction (continued)

• Consider the set of the following two records for R:
– t1 will have the value “0” in all attributes of U1V and the value

“1” on all attributes of U2\V

– t2 will have the value “0” in all attributes of U2V and the value
“1” on all attributes of U1\V

• This set satisfies F since for each dependency XY that is
violated by this set it must be that X is in V while Y includes
attributes that are not in V

• On the other hand, U1
R ⋈ U2

R includes the record that

contains all “0”s, which is not in R
• Q.E.D.

Decomposition into Multiple
Schemas

• A decomposition U1,…,Uk for a relation R[U] is information
preserving if and only if it can be presented as a sequence
of information preserving decompositions, each of which
decomposes a schema into two

• Practically, scanning all possible sequences of
decompositions for U1,…,Uk may take exponential time
– In the recitation, a more efficient algorithm for verifying a

decomposition into multiple relations will be presented

Zip
code

Addres
s

Name Number

Zip
code

Addres
s

Numbe
r

Name Number
Addres
s

Number Zip
code

Addres
s

Functional Dependencies and
Redundancy

• A functional dependency XY for a relation R[U] may indicate
redundancy since the values of Y are duplicated in all records
that agree on X

• Example:
– Recall the (ill-designed) single big schema of students registered to

courses
– In that schema, there is a functional dependency between the

student number and his address
– Yet, there is no functional dependency between the student number

and the course number
– Indeed, we have seen that there is redundancy in the student address

• Hence, we shall define a “goodness” criteria for a schema U in
the sense that no further decomposition is needed based on
the inexistence of certain functional dependencies

Boyce & Codd Normal Form

• Definition: A relation R[U] is in BCNF for a set of
dependencies F (derived from the system’s
requirements) if and only if for each dependency XY
implied by F at least one of the following holds:
– YX (i.e., the dependency is trivial)
– X is a superkey of R (in this case there is no redundancy

since no two distinct rows agree on X)

• Ideally, we would like to design our database such that
each schema is in BCNF

• For U itself, it is enough to check F, however, to verify
for any VU if it is in BCNF we need to check F+

BCNF and Information Preserving
Decompositions

• Theorem:
– If R[U] is not in BCNF with respect to a functional dependency set F, then

there is an information preserving decomposition for R

• Proof:
– Assume that F⊢XY holds where Y is not a subset of X and X is not a

superkey for R
– Consider the decomposition U1=XF+ , U2=U\(XF+ \X)
– This is a valid decomposition (neither U1 nor U2 are equal to U but their

unification is)
– Further, U1U2=X and X is a superkey for U1R (by the definition of U1)

– Hence, by the theorem about decomposition into two relations this is an
information preserving decomposition

• Conclusion:
– Each relation has an information preserving decomposition into relations

in BCNF

Dependency Preserving
• Another possible quality criteria for a decomposition is whether it

preserves functional dependencies without requiring reconstruction of
the original relation (using joins)

• We prefer a decomposition that enables verifying dependencies by only
checking the resulting schemas

• A decomposition U1,…,Ut is called dependency preserving if (F1…
Ft)+=F+ where Fi is the set of dependencies in F+ that includes only
attributes of Ui

• Verifying dependency preserving by calculating the closure of the
dependency set is inefficient
– In the recitation, we will see an algorithm for verifying dependency preserving

by computing closures of sets (similar to the algorithm we saw for comparing
dependency sets closures)

BCNF and Dependency Preserving
Decompositions

• It is possible that some R[U] is not in BCNF with respect to F, yet
R[U] does not have a dependency preserving decomposition
– BCNF is not a good criterion for dependency preserving decompositions

• For example, consider the relation Addr[Street, City, Zip] and the
dependency set F={ZipCity,{Street,City}Zip}
– This relation is not in BCNF since Zip is not a superkey for it despite the

dependency ZipCity

• However, any valid decomposition of R would not preserve F
– Notice that ZipCity is the only non-trivial dependency in F+ that involves

only two attributes
– Hence, in any decomposition of Addr, the only dependency that can be

included in any Ui is ZipCity, but the dependency {Street,City}Zip
cannot be deduced from it

3NF – 3rd Normal Form

• We would like to have a criterion that is less strict than BCNF,
but would be dependency preserving
– I.e., we are willing to “pay” a little bit in redundancy in order to

preserve dependencies as well

• Definition: A relation R is in 3NF for a dependency set F if
for each dependency XA in F+ where A is a single attribute,
at least one of the following holds:
– AX (i.e., the dependency is trivial)
– X is a superkey of R (as in the definition of BCNF)
– A belongs to (at least) one of the candidate keys of R

• For example, the relation Addr from the previous slide is in
3NF despite not being in BCNF

3NF and Information and Dependency
Preserving Decomposition

• Theorem:
– For each relation R[U] satisfying a dependency set F,

there is an information and dependency preserving
decomposition into a set of relations, each of which is in
3NF

• Proof:
– The following algorithm always find such a

decomposition

– The algorithm shown in the recitation is an improvement
of this one

Let G be a minimal covering of F

For every XA in G do

Add the set UX,A = X{A} to the listA} to the list

If no set UX,A contains a key for R

Add a candidate key Ukey to the list

Proof – Validity of the Decomposition

• We will show that the union of all sets is U
– That is, every BU is included in at least one of the sets

• If G includes a dependency YB then we have B∈UY,B and
we are done

• Otherwise, it can be verified that for each Y for which
B∉Y it is not possible that B∈Y+ and therefore every
superkey of the relation includes B
– The algorithm ensures that at least one of the sets will be a

superkey and therefore include B

• Comment: It is possible that during the decomposition
we will get one set that is a subset of another – in this
case, the included set will be eliminated

Proof – the Decomposition is in 3NF

• In the set of attributes Ukey there are no non-trivial dependencies
– Otherwise, if YZ is a non-trivial dependency that follows from F and is

included in Ukey then the set Ukey\(Z\Y) would have been a superkey in
contradiction to the assumption that Ukey is a candidate key

• Similarly, for each dependency XA in G, over the set UX,A there
is no non-trivial dependency YZ for which YX except for XA
itself
– Otherwise, it would contradict the assumption that G is a minimal

cover

• There is another possibility for UX,A, in which it includes a non-
trivial dependency YB for which AY
– However, in this case B is part of a candidate key in UX,A, since X is

such a key from the minimality of G (it is not possible that A=B since
then the dependency is trivial)

Proof – Information and Dependency
Preserving

• Dependency preserving
– Since we assumed that G covers F, the dependency preservation

follows from the fact that for each dependency in G we define a
set of attributes that includes it

• Information preserving
– The algorithm ensures that at least one of the sets will be a

superkey for R
– Next, we use the following general claim

• Claim
– A dependency preserving decomposition for which one of the sets

is a superkey for the entire scheme is information preserving
– The proof is left as an exercise

Multivalued Dependencies

• Definition: For a relation R[U] and subsets X,Y of the
attribute set U, we say that R satisfies the multivalued
dependency X↠Y if for each possible content of R we
have
– If t1 and t2 are records in R for which X(t2)=X(t1) holds, then

there exists a record t3 in R for which XY(t3)=XY(t1) and U\

Y(t3)=U\Y(t2)

• The basic idea is that for each record t in R, we
examine all records in R that agree with t on all
attributes except for Y\X
– The projection of this set on Y depends only on the values of

t on X and not on the values of t on U\(XY)

Multivalued Dependencies –
Example

• In the following relation, there is a
multivalued dependency from “Animal” to
“Behavior”, but not from “Color” to
“Behavior”Behavior Color Animal

Growl Black Cat

Meow Black Cat

Growl White Cat

Meow White Cat

Neigh White Horse

Gallop White Horse

What does the fox say?

Dependencies Inference

• Given a set of dependencies (both functional and
multivalued) F for a relation R[U], we say that a
dependency X↠Y follows from F if every possible
content of R that satisfies F also satisfies X↠Y
–We define a functional dependency XY that follows from F

similarly (it might follow from the multivalued dependencies
and not just the functional dependencies of F)

• There is a set of axioms corresponding to Armstrong’s
axioms such that a dependency follows from F if and
only if it can be inferred from F using a finite number of
applications of these axioms
– This is beyond the scope of this course

4NF – the 4th Normal Form

• Definition: A relation R[u] is in 4NF for a dependency set
F (both functional and multivalued) if every for dependency
X↠Y or XY that follows from F, either YX (i.e., the
dependency is trivial) or X is a superkey for R

• This condition is even stronger than BCNF
– Therefore there can be relations that are not in 4NF for which

there does not exist a dependency preserving decomposition

• However, each relation has an information preserving
decomposition into relations in 4NF
– In fact, the definition of the dependency X↠Y is equivalent to

saying that “the content of the relation always satisfies
R=(X∪YR)⋈(U∖(Y∖X)R)”

Other Types of
Dependencies

• Embedded dependencies
– Certain types of dependencies (except for functional

dependencies) might be satisfied only w.r.t. a certain
projection of the relation, but not the entire relation

• Example:
– A bank customer might open multiple accounts and use a

different address in each of them
– In the relation (id,name,address,branch,account_no) there

is no dependency between id and address
– However, in the projection to the attributes

(id,name,address) there is such a multivalued dependency

Additional Types of
Dependencies

• Inclusion dependencies
– Dependencies that involve multiple relations

such as “W(R)W(S)” where W is a set of
attributes that exist in both R and S

– In ERD, these dependencies are expressed
naturally through the connections between the
relationship set and the entity sets connected to
it

• Such dependencies are out of the scope of
this course

	Slide 1
	Decomposition
	A Decomposition Example
	Keys - Reminder
	Theorem
	Proof – First Direction
	Proof – Second Direction
	Proof – Second Direction (continued)
	Decomposition into Multiple Schemas
	Functional Dependencies and Redundancy
	Boyce & Codd Normal Form
	BCNF and Information Preserving Decompositions
	Dependency Preserving
	BCNF and Dependency Preserving Decompositions
	3NF – 3rd Normal Form
	3NF and Information and Dependency Preserving Decomposition
	Proof – Validity of the Decomposition
	Proof – the Decomposition is in 3NF
	Proof – Information and Dependency Preserving
	Multivalued Dependencies
	Multivalued Dependencies – Example
	Dependencies Inference
	4NF – the 4th Normal Form
	Other Types of Dependencies
	Additional Types of Dependencies

