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Decomposition
• Suppose we have a relation R[U] with a schema U={A1,…,An}
– A decomposition of U is a set of schemas U1,…,Ut  for which                 U1 

 …  Ut=U

• A decomposition is information preserving if it satisfies 
(U1R)⋈(U2R) ⋈... ⋈(UtR)=R

• If we have an information preserving decomposition, we can 
maintain tables for U1R,...,UtR  instead of one big table for R

• Our goal is to find information preserving decompositions for 
each possible content of R based on the functional dependencies 
identified from the system’s analysis
– Hence, we need to identify conditions for information preserving that 

follow from functional dependencies



A Decomposition Example
• Consider the following relation

• The following decomposition is not information preserving

• T1⋈T2 includes (Horse,Black,Small) which is not included in T

• Notice that when applying a join on decomposed tables, new 
records that did not appear in the original relation (table) can be 
added, but existing records cannot be removed (why?)

Size Color Animal

Large Black Horse

Large Black Cat

Small Black Cat

T=

Color Animal

Black Horse

Black Cat

Size Color

Large Black

Small Black

T2=T1=



Keys - Reminder

• Given a relation R with a schema U and a set 
of dependencies F defined over U, a set of 
attributes XU is a super-key if the values 
of the attributes in X uniquely identify a 
record in R
– In other words, X is a super-key if XF+=U

• The set X is a candidate-key, or simply a 
key, if it is a minimal super-key
– That is, X is a super-key and no proper subset of X 

is a super-key
• Notice that minimal key does not imply smallest key



Theorem

• If R[U] is a relation over the schema U 
preserving a dependency set F, then the 
decomposition {U1,U2} of U is information 
preserving (for any content of R) if and 
only if U1U2 is a super-key for U1R or for 
U2R  (or both)



Proof – First Direction

• Suppose that U1U2 is a super-key for U2R

• Hence, the expression F⊢U1U2U2 holds

• R U1R ⋈ U2R always holds (regardless of U1U2)

• Hence, we must prove that any record in U1R⋈U2R also appears 
in R

• Let t be a record in U1R⋈U2R 

• Hence, there is a record t1R for which U1(t1) = U1(t)

• For these, U1U2t1 =U2(U1t1)=U2(U1t)=U1U2t  holds

• Consequently, from U1U2U2 we deduce that U2(t1)=U2(t) holds

• Thus, t=t1 – that is, tR as needed



Proof – Second Direction

• Assume by way of contradiction that neither F⊢U1U2U1  nor 
F⊢U1U2U2 hold
–We will construct a possible content for R[U] that satisfies F but is not 

information preserving

• Denote V the set (U1U2)F+  that includes every attribute A for 
which F⊢U1U2A
– By the assumptions, neither U1\V nor U2\V are empty
– Further, U1U2V

• Since V is a closure, VF+=V holds
– In particular, V does not include any dependency of the form XY  for 

which X is included in V while Y includes an attribute that is not in V



Proof – Second Direction (continued)

• Consider the set of the following two records for R:
– t1 will have the value “0” in all attributes of U1V and the value 

“1” on all attributes of U2\V

– t2 will have the value “0” in all attributes of U2V and the value 
“1” on all attributes of U1\V

• This set satisfies F since for each dependency XY that is 
violated by this set it must be that X is in V while Y includes 
attributes that are not in V

• On the other hand, U1
R ⋈ U2

R  includes the record that 

contains all “0”s, which is not in R
• Q.E.D.



Decomposition into Multiple 
Schemas

• A decomposition U1,…,Uk for a relation R[U] is information 
preserving if and only if it can be presented as a sequence 
of information preserving decompositions, each of which 
decomposes a schema into two

• Practically, scanning all possible sequences of 
decompositions for U1,…,Uk may take exponential time
– In the recitation, a more efficient algorithm for verifying a 

decomposition into multiple relations will be presented
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Functional Dependencies and 
Redundancy

• A functional dependency XY for a relation R[U] may indicate 
redundancy since the values of Y are duplicated in all records 
that agree on X

• Example:
– Recall the (ill-designed) single big schema of students registered to 

courses
–  In that schema, there is a functional dependency between the 

student number and his address
– Yet, there is no functional dependency between the student number 

and the course number
– Indeed, we have seen that there is redundancy in the student address

• Hence, we shall define a “goodness” criteria for a schema U in 
the sense that no further decomposition is needed based on 
the inexistence of certain functional dependencies



Boyce & Codd Normal Form

• Definition: A relation R[U] is in BCNF for a set of 
dependencies F (derived from the system’s 
requirements) if and only if for each dependency XY 
implied by F at least one of the following holds:
– YX (i.e., the dependency is trivial)
– X is a superkey of R (in this case there is no redundancy 

since no two distinct rows agree on X)

• Ideally, we would like to design our database such that 
each schema is in BCNF

• For U itself, it is enough to check F, however, to verify 
for any VU if it is in BCNF we need to check F+



BCNF and Information Preserving 
Decompositions

• Theorem:
– If R[U] is not in BCNF with respect to a functional dependency set F, then 

there is an information preserving decomposition for R

• Proof:
– Assume that F⊢XY holds where Y is not a subset of X and X is not a 

superkey for R
– Consider the decomposition U1=XF+ , U2=U\(XF+ \X)
– This is a valid decomposition (neither U1 nor U2 are equal to U but their 

unification is)
– Further, U1U2=X and X is a superkey for U1R  (by the definition of U1)

– Hence, by the theorem about decomposition into two relations this is an 
information preserving decomposition

• Conclusion:
– Each relation has an information preserving decomposition into relations 

in BCNF



Dependency Preserving
• Another possible quality criteria for a decomposition is whether it 

preserves functional dependencies without requiring reconstruction of 
the original relation (using joins)

• We prefer a decomposition that enables verifying dependencies by only 
checking the resulting schemas

• A decomposition U1,…,Ut is called dependency preserving if (F1…
Ft)+=F+ where Fi is the set of dependencies in F+ that includes only 
attributes of Ui

• Verifying dependency preserving by calculating the closure of the 
dependency set is inefficient
– In the recitation, we will see an algorithm for verifying dependency preserving 

by computing closures of sets (similar to the algorithm we saw for comparing 
dependency sets closures)



BCNF and Dependency Preserving 
Decompositions

• It is possible that some R[U] is not in BCNF with respect to F, yet 
R[U] does not have a dependency preserving decomposition
– BCNF is not a good criterion for dependency preserving decompositions

• For example, consider the relation Addr[Street, City, Zip] and the 
dependency set F={ZipCity,{Street,City}Zip}
– This relation is not in BCNF since Zip is not a superkey for it despite the 

dependency ZipCity

• However, any valid decomposition of R would not preserve F
– Notice that ZipCity is the only non-trivial dependency in F+ that involves 

only two attributes
– Hence, in any decomposition of Addr, the only dependency that can be 

included in any Ui is ZipCity, but the dependency {Street,City}Zip 
cannot be deduced from it



3NF – 3rd Normal Form

• We would like to have a criterion that is less strict than BCNF, 
but would be dependency preserving
– I.e., we are willing to “pay” a little bit in redundancy in order to 

preserve dependencies as well

• Definition: A relation R is in 3NF for a dependency set F if 
for each dependency XA in F+ where A is a single attribute, 
at least one of the following holds:
– AX (i.e., the dependency is trivial)
– X is a superkey of R (as in the definition of BCNF)
– A belongs to (at least) one of the candidate keys of R

• For example, the relation Addr from the previous slide is in 
3NF despite not being in BCNF



3NF and Information and Dependency 
Preserving Decomposition

• Theorem:
– For each relation R[U] satisfying a dependency set F, 

there is an information and dependency preserving 
decomposition into a set of relations, each of which is in 
3NF

• Proof:
– The following algorithm always find such a 

decomposition

– The algorithm shown in the recitation is an improvement 
of this one

Let G be a minimal covering of F

For every XA in G do

Add the set UX,A = X{A} to the listA} to the list

If no set UX,A contains a key for R

Add a candidate key Ukey to the list



Proof – Validity of the Decomposition

• We will show that the union of all sets is U
– That is, every BU is included in at least one of the sets

• If G includes a dependency YB then we have B∈UY,B and 
we are done

• Otherwise, it can be verified that for each Y for which 
B∉Y it is not possible that B∈Y+ and therefore every 
superkey of the relation includes B
– The algorithm ensures that at least one of the sets will be a 

superkey and therefore include B

• Comment: It is possible that during the decomposition 
we will get one set that is a subset of another – in this 
case, the included set will be eliminated



Proof – the Decomposition is in 3NF

• In the set of attributes Ukey there are no non-trivial dependencies
– Otherwise, if YZ is a non-trivial dependency that follows from F and is 

included in Ukey then the set Ukey\(Z\Y) would have been a superkey in 
contradiction to the assumption that Ukey is a candidate key

• Similarly, for each dependency XA in G, over the set UX,A there 
is no non-trivial dependency YZ for which YX except for XA 
itself
– Otherwise, it would contradict the assumption that G is a minimal 

cover

• There is another possibility for UX,A, in which it includes a non-
trivial dependency YB for which AY
– However, in this case B is part of a candidate key in UX,A, since X is 

such a key from the minimality of G (it is not possible that A=B since 
then the dependency is trivial)



Proof – Information and Dependency 
Preserving

• Dependency preserving
– Since we assumed that G covers F, the dependency preservation 

follows from the fact that for each dependency in G we define a 
set of attributes that includes it

• Information preserving
– The algorithm ensures that at least one of the sets will be a 

superkey for R
– Next, we use the following general claim

• Claim
– A dependency preserving decomposition for which one of the sets 

is a superkey for the entire scheme is information preserving
– The proof is left as an exercise



Multivalued Dependencies

• Definition: For a relation R[U] and subsets X,Y of the 
attribute set U, we say that R satisfies the multivalued 
dependency X↠Y if for each possible content of R we 
have
– If t1 and t2 are records in R for which X(t2)=X(t1) holds, then 

there exists a record t3 in R for which XY(t3)=XY(t1) and U\

Y(t3)=U\Y(t2)

• The basic idea is that for each record t in R, we 
examine all records in R that agree with t on all 
attributes except for Y\X
– The projection of this set on Y depends only on the values of 

t on X and not on the values of t on U\(XY)



Multivalued Dependencies – 
Example

• In the following relation, there is a 
multivalued dependency from “Animal” to 
“Behavior”, but not from “Color” to 
“Behavior”Behavior Color Animal

Growl Black Cat

Meow Black Cat

Growl White Cat

Meow White Cat

Neigh White Horse

Gallop White Horse

What does the fox say?



Dependencies Inference

• Given a set of dependencies (both functional and 
multivalued) F for a relation R[U], we say that a 
dependency X↠Y follows from F if every possible 
content of R that satisfies F also satisfies X↠Y
–We define a functional dependency XY that follows from F 

similarly (it might follow from the multivalued dependencies 
and not just the functional dependencies of F)

• There is a set of axioms corresponding to Armstrong’s 
axioms such that a dependency follows from F if and 
only if it can be inferred from F using a finite number of 
applications of these axioms
– This is beyond the scope of this course



4NF – the 4th Normal Form

• Definition: A relation R[u] is in 4NF for a dependency set 
F (both functional and multivalued) if every for dependency 
X↠Y or XY that follows from F, either YX  (i.e., the 
dependency is trivial) or X is a superkey for R

• This condition is even stronger than BCNF
– Therefore there can be relations that are not in 4NF for which 

there does not exist a dependency preserving decomposition

• However, each relation has an information preserving 
decomposition into relations in 4NF
– In fact, the definition of the dependency X↠Y is equivalent to 

saying that “the content of the relation always satisfies 
R=(X∪YR)⋈(U∖(Y∖X)R)”



Other Types of 
Dependencies

• Embedded dependencies
– Certain types of dependencies (except for functional 

dependencies) might be satisfied only w.r.t. a certain 
projection of the relation, but not the entire relation

• Example:
– A bank customer might open multiple accounts and use a 

different address in each of them
– In the relation (id,name,address,branch,account_no) there 

is no dependency between id and address
– However, in the projection to the attributes 

(id,name,address) there is such a multivalued dependency



Additional Types of 
Dependencies

• Inclusion dependencies
– Dependencies that involve multiple relations 

such as “W(R)W(S)” where W is a set of 
attributes that exist in both R and S

– In ERD, these dependencies are expressed 
naturally through the connections between the 
relationship set and the entity sets connected to 
it

• Such dependencies are out of the scope of 
this course


	Slide 1
	Decomposition
	A Decomposition Example
	Keys - Reminder
	Theorem
	Proof – First Direction
	Proof – Second Direction
	Proof – Second Direction (continued)
	Decomposition into Multiple Schemas
	Functional Dependencies and Redundancy
	Boyce & Codd Normal Form
	BCNF and Information Preserving Decompositions
	Dependency Preserving
	BCNF and Dependency Preserving Decompositions
	3NF – 3rd Normal Form
	3NF and Information and Dependency Preserving Decomposition
	Proof – Validity of the Decomposition
	Proof – the Decomposition is in 3NF
	Proof – Information and Dependency Preserving
	Multivalued Dependencies
	Multivalued Dependencies – Example
	Dependencies Inference
	4NF – the 4th Normal Form
	Other Types of Dependencies
	Additional Types of Dependencies

